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ABSTRACT

Cross-domain recommendation, as an intelligent machine to allevi-

ate data sparsity and cold start problems, has attracted extensive

attention from scholars. Existing cross-domain recommendation

frameworks usually leverage overlapping entities for knowledge

transfer, the most popular of which are information aggregation

and consistency maintenance. Despite decent improvements, the

neglect of dynamic perspectives, the presence of confounding fac-

tors, and the disparities in domain properties inevitably constrain

model performance. In view of this, this paper proposes a sequen-

tial recommendation framework via adaptive cross-domain knowl-

edge decomposition, namely ARISEN, which focuses on employing

adaptive causal learning to improve recommendation performance.

Specifically, in order to facilitate sequence transfer, we align the

user’s behaviour sequences in the source domain and target do-

main according to the timestamps, expecting to use the abundant

semantics of the former to augment the information of the latter.

Regarding confounding factor removal, we introduce the causal

learning technique and promote it as an adaptive representation

decomposition framework on the basis of instrumental variables.

For the sake of alleviating the impact of domain disparities, this

paper endeavors to employ two mutually orthogonal transforma-

tion matrices for information fusion. Extensive experiments and

detailed analyzes on large industrial and public data sets demon-

strate that our framework can achieve substantial improvements

over state-of-the-art algorithms.
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1 INTRODUCTION

With the data explosion of the network and mobile applications,

the recommendation system, as a widely used information filtering

application, has become an indispensable tool in our life [44, 54, 61,

64]. Despite its powerful capabilities in overcoming information

overload and capturing user preferences, there are still certain

weaknesses in addressing data sparsity [14, 23, 55] and cold-start

problems [51, 60]. On account of this, a large body of research

has made tremendous efforts on cross-domain recommendation

using the flourishing transfer learning [24, 56, 59]. For instance,

numerous companies operate not only a shopping mall platform but

also an associated community platform, both serving as valuable

repositories of user interests and facilitating knowledge transfer.

Existing cross-domain recommendation frameworks mainly rely

on overlapping entities for knowledge transfer [8, 15], thereby

improving the performance of models in single or dual domains. To

be specific, the common practices of overlapping entity utilization

can be mainly divided into information aggregation [9, 21, 27] and

consistency maintenance [48, 49, 52, 53]. The former adopts a variety

of aggregation methods, such as concat, pooling, and attention [20,

58, 59], to fuse the entity representations in the two domains, while

the latter tends to attach semantic-rich regularization terms to force

the embedding approximation of the same entity between different

domains [34]. There are also approaches that rely on identifying

domain mapping equations, which assume linear or non-linear
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Figure 1: Examples of mall and community forum domains.

Sort the click and query records of the overlap user in the

mall and community alternately by timestamp. For each click

record in the mall, all community query records prior to that

timestamp are used as supplementary data.

relationships between different representations of domains. Our

framework endeavors to promote the first paradigm.

Regardless of the decent performance, existing research on cross-

domain recommendation still bears with unresolved challenges [29,

47]. First, due to the simplicity of static transfer, the vast majority

of cross-domain frameworks improve on collaborative filtering or

content-based recommendation. Nevertheless, these static mod-

eling approaches can only capture general preferences of users,

and there is still a lack of off-the-shelf attempts to integrate cross-

domain transfer with sequential recommendation [2, 23]. Second,

considering various biases in prevailing recommender systems,

using coarse transfer without debiasing may introduce cumula-

tive noise [10, 32, 63]. One potential solution to tackle this chal-

lenge is to leverage causal decoupling techniques from established

single-domain recommendation methods within the cross-domain

framework, as suggested in recent research studies [33, 42]. How-

ever, a drawback of this approach is that it relies on manual in-

tervention, particularly in the selection of instrumental variables

(IVs) [6, 17, 33, 46]. In particular, instrumental variables, as im-

portant elements of decoupling confounding factors and causality

using two-stage least squares (2SLS), need to be manually defined

in advance, whether in the traditional causal learning framework

or in combination with deep learning [45]. Nonetheless, in light

of recent research, it has become apparent that these IVs defined

based on artificial experience may violate the conditions of effective

IV during training, rendering the explicitly specified independent

variable feeble or suboptimal, thus hindering the application of

IV-based counterfactual prediction methods [33]. Third, there exist

fundamental disparities between different domains, and the distinc-

tive attributes of each domain may result in noise and performance

degradation when attempting to directly integrate cross-domain

knowledge [27, 33]. On the one hand, knowledge transfer across

domains requires selectivity rather than integrity, especially in se-

quential recommendation scenarios; on the other hand, considering

the temporal relationship in sequential recommendation, more fine-

grained information filtering at the point-in-time level is required.

To address these challenges, this paper proposes a sequentiAl

Recommendation vIa an adaptive crosS-domain knowledgE de-

compositioN, i.e., ARISEN. Specifically, for cross-domain sequential

recommendation, we propose a temporal point-to-point knowledge

transfer approach. With reference to Figure 1, we treat the commu-

nity and the mall as the source and target domains, respectively,

utilizing all community interaction data preceding each purchase

timestamp in the mall as supplementary knowledge to enhance the

supervision signal at that specific time point. Targeted at alleviating

accumulated bias derived from cofounders, we design an adaptive

causal learning framework to reconstruct target domain embed-

dings for unbiased knowledge transfer. Particularly, we exploit

search information as an instrumental variable [33, 46] and employ

a two-stage least squares approach to guide the decomposition of

community behavior representations. In contrast to the prior ap-

proach of directly incorporating instrumental variables [5, 35, 36],

we introduce two mutual information constraints, namely relevance

and exclusion, to facilitate collaborative optimization of instrumen-

tal variables. Given the notable disparities between the two domains,

we integrate a latent orthogonal mapping [25, 26, 50]mechanism

for better information fusion. More precisely, the adaptive nature

of the orthogonal matrices enables them to determine whether to

incorporate cross-domain knowledge based on the state of the two

sequences at a specific time point. We conduct extensive experi-

ments and detailed analysis on two large data sets to demonstrate

the effectiveness and interpretability of our framework.

In a nutshell, this paper makes the following contributions:

• This work represents a remarkable effort on cross-domain se-

quential recommendation using an adaptive causal learning

framework. We leverage the behavior sequences of the source

domain as cross-domain knowledge to alleviate the data sparsity

and cold-start dilemma of the target domain.

• With the aim of decoupling behavior representations more ef-

fectively, we design a mutual information loss function on the

basis of the relevance and exclusion of instrumental variables,

and jointly optimize it.

• We conduct extensive experiments and detailed analysis on two

real-world industrial data sets. We have released all source code

and sample data for reproducibility 1.

2 RELATEDWORK

Our framework is derived from two research areas, cross-domain

recommendation and IV-based causal inference. Below we will intro-

duce their main genres and key differences from this work.

2.1 Cross-domain Recommendation

Cross-domain recommendation is applied to solve the headaches of

data sparsity and cold start in traditional recommendation systems.

The essential idea is to leverage the information collected in the

source domain to improve the recommendation performance in the

target domain [47]. Existing methods mainly include information

aggregation, consistency maintenance andmapping equation seeking.

For information aggregation, DTCDR [58] attempts to combine

text content and ratings of overlapping users in three ways (con-

catenation, max-pooling, average-pooling) to achieve bidirectional

transfer of user preferences. CoNet [20] shares representations of

overlapping user to achieve dual-domain collaborative training. For

consistency maintenance genre, CDRIB [7] designs two informa-

tion bottleneck regularizers on the basis of information bottleneck

principle, aiming to jointly learn cross-domain and intra-domain

1https://github.com/LxytIUON/ARISEN
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user representations. CIT [49] draws on domain adaptive technol-

ogy to maximize the overall fit of user information across domains,

thereby ensuring that the knowledge extracted from the source

domain fits the target domain. For methods based on mapping

functions, DDTCDR [25] seeks mutual mapping equations of two

domain representations to maintain domain-specific properties.

PTUPCDR [61] designs a cross-domain oriented meta-learner to

generate a personalized preference transfer bridge for each overlap-

ping user, so as to realize the personalized transfer of user interests.

Our algorithm strives to improve on the first paradigm. Partic-

ularly, In contrast to prior methodologies centering on refining the

process of information aggregation, the approach delineated herein is

intended to acquire unbiased cross-domain knowledge via represen-

tational reconstruction, thus eradicating the prejudicial influence of

confounding variables on information aggregation.

2.2 IV-based Causal Inference

Causal inference is an effective machine in scientific and commer-

cial applications, where the IV-based paradigm is widely welcomed

for its simplicity. Traditional IV-based counterfactual prediction

methods mostly adopt the two-stage least squares [3], which as-

sumes that there exists a linear relationship between random vari-

ables. There are a host of IV-based causal learning methods that

extend 2SLS beyond this. GMM [16] performs parameter estimation

based on the moment condition satisfied by the actual parameters

of the model. DeepGMM [5] uses deep neural network to extend

GMM-based methods and realize nonlinear IVs regression. KIV [35]

employs kernel ridge regression to model the relationship between

variables as nonlinear relationship in reproducing kernel Hilbert

spaces. Deep IV [17] proposes a flexible framework to fit mixed den-

sity networks for treatment and trains an outcome prediction model

with estimated conditional treatment distributions, thus combining

the 2SLS with deep learning to overcome the constraints of linear

relationships and dimensions. IV4Rec [33] applies the IV-based idea

into cross-domain recommendation scenario and conduct represen-

tation debias by causal decoupling.

Despite decent performance, most of the aforementioned works re-

quire predefined effective IVs, which are difficult to satisfy in the real

scenario due to the harshness of their conditions (such as relevance,

exclusion). In view of this, this paper puts a deep insight into the con-

ditions of instrumental variables. Moreover, novel mutual information

constraints are ingeniously formulated to enable the synergistic opti-

mization of said variables throughout the training protocol, so as to

better perform causal decomposition.

3 PROPOSED METHOD

In this section, we introduce our proposed ARISEN framework.

We first formalize the problem definition and optimization goals,

then elaborate the technical details of each sub-module, and finally

illustrate the model training.

3.1 Problem Formulation

Suppose there is a source domain (community) and a target do-

main (mall), and they share an overlapping set of users 𝑈 and

non-overlapping item sets 𝐼M and 𝐼 C . The behavior records of

users in the mall and community are 𝐷M and 𝐷C respectively,

Casual
Association

Non-Casual
Association

Treatment

Outcome

Tu,i

C

Yu,i

Confounder

Figure 2: Recommendations from a causal perspective. The

causal associations and non-causal associations are mixed

between treatment and outcome.

where (𝑢, 𝑖, 𝑐, 𝑠) ∈ 𝐷M refers to the user’s response to product 𝑖
at time 𝑠 . 𝑐 = 0 means that 𝑢 does not click 𝑖 , otherwise clicks,

where 𝑖 refers to products and posts in the mall and community

respectively. In addition, the users’ searching behavior in the two

domains is recorded as 𝐷Q , where (𝑢, 𝑞, 𝑠) ∈ 𝐷Q represents 𝑢’s
searching content 𝑞 at time point 𝑠 . In this paper, our goal is to

reconstruct the treatment in 𝐷C with the help of 𝐷Q and utilize

it as supplementary knowledge to enhance the recommendation

performance of 𝐷M .

3.2 Recommendations from A Causal Insight

Existing sequential recommender systems are often trained by

users’ click histories, stemming from the belief that each user’s click

(𝑢, 𝑖, 𝑐, 𝑠) unbiasedly expresses the user’s preferences. Nonetheless,

in reality, the user’s click behavior may be disturbed by a host of

confounding factors (such as position bias [22], popularity bias [62],

and selection bias [28]), resulting in a decline in recommendation

performance. Causal inference can be used to address this issue,

and its formalization is shown in Figure 2. The user and item repre-

sentations are used as joint input, also known as the treatment𝑇𝑢,𝑖 ,
and the click behavior is under the name of the outcome 𝑌𝑢,𝑖 . The
confounding factor 𝐶 is correlated with both 𝑇𝑢,𝑖 and 𝑌𝑢,𝑖 , which
distorts (masks or exaggerates) the true connection between the

two. In other words, the presence of 𝐶 negatively affects the rec-

ommendation performance.

In cross-domain recommendation, this inferior influence may

be transferred from the source domain to the target domain, and

produce worse results due to the domain gap.

An intuitive solution to this dilemma is to remove the effects of

confounding factors before knowledge transfer. There have been

attempts of similar ideas in single-domain recommendation, which

manually select an instrumental variable, and then performs 2SLS

approach to decouple the representation into a causal and non-

causal association part [46]. The key to the success of this scheme

lies in the selection of IVs, which need to meet the following condi-

tions [41, 45],

(1) Relevance: IVs 𝑍 is related to treatment 𝑇 ,
i.e., P(𝑇 |𝑍 ) ≠ P(𝑇 ).

(2) Exclusion: IVs 𝑍 does not directly affect outcome 𝑌 ,
i.e., P(𝑌 |𝑍,𝑇 ,𝐶) = P(𝑌 |,𝑇 ,𝐶).

(3) Unconfounded Instrument: IVs 𝑍 should be unconfounded,

i.e., P(𝐶 |𝑍 ) = P(𝐶).

 

3455



CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Chuang Zhao, Xinyu Li, Ming HE, Hongke Zhao, and Jianping Fan

Tu,i
re

CR
Tu,i˜Tu,iˆ

Tu,iZu,i

Yu,i
Figure 3: Treatment reconstruction. We leverage IVs to de-

compose treatment into causal associations and non-causal

associations, and reconstruct it.

Accordingly, in our scenario, we regards user’s search records

in dual domains as an instrumental variable to decouple 𝑇𝑢,𝑖 . As
depicted in Figure 3, we aggregate the user query in two domains

as an IV, defined as 𝑍𝑢,𝑖 , by timestamp. By regressing 𝑇𝑢,𝑖 on 𝑍𝑢,𝑖
to get 𝑇𝑢,𝑖 , which is not dependent on the confounders 𝐶 . The re-
lationship between 𝑇𝑢,𝑖 and the outcome 𝑌𝑢,𝑖 can be viewed as a

causal association, since it is only related to the input treatment

and not related to the outcome 𝑌𝑢,𝑖 . We also calculated the residual

𝑇𝑢,𝑖 of the regression, which is correlated with both the input treat-

ment and the outcome. We regard the relationship between 𝑇𝑢,𝑖
and outcome 𝑌𝑢,𝑖 as a non-causal association. By way of weighted

combination𝑇𝑢,𝑖 and residuals𝑇𝑢,𝑖 , we reconstruct a more effective

treatment 𝑇 𝑟𝑒
𝑢,𝑖 . In other words, we decouple the real preferences of

users in the community from confounding factors and reconstruct

more effective user representations.

3.3 Overview of Framework

We propose ARISEN to address the cross-domain transfer problem

in sequential recommendation, which augments the information

of the mall domain by reconstructing a more effective community

domain representation and using it as cross-domain knowledge.

Specifically, our framework consists of four main parts, as shown

in Figure 4. In the Variable Representation Module, we separately

define the originate treatment𝑇𝑢,𝑖 and instrumental variable𝑍𝑢,𝑖 on
the basis of causal inference and sequential recommendation. Next,

we perform a representational decomposition and reconstructions

of community embeddings using search records in the Treatment

Reconstruction Module. Finally, the mall embedding and community

embedding are fed into the underlying recommendermodel through

Orthogonal Mapping Module. In addition, in order to alleviate the

defect of manual selection of IVs, we design a training method of IVs

Collaborative Optimization on account of its necessary condition.

3.4 Variable Representation Module

To obtain confound-free cross-domain knowledge transfer, we re-

gard the user’s interaction sequence in the source domain (com-

munity) and targeted product in the target domain (mall) as the

treatment. Formally, for 𝑢,

𝑇𝑢,𝑖 = {𝑡 𝑗 : 𝑗 ∈ 𝐼 C𝑢 ∪ {𝑖}}, 𝑖 ∈ 𝐼M𝑢 , (1)

where 𝑡 𝑗 is the embedding vector of post 𝑗 , which is usually gen-

erated by some representation learning methods (e.g., BERT [12]),

and 𝐼 C𝑢 denotes click sequence of𝑢 in the community, and |𝐼 C𝑢 | = 𝑙C .
Each 𝑡 𝑗 corresponds to a timestamp 𝑠𝑡𝑗 , recording when the user 𝑢

clicks on the post 𝑗 .
Meanwhile, the user 𝑢 also has a series of query Q𝑢 , in which

each 𝑞𝑖 ∈ Q𝑢 also has a time stamp 𝑠
𝑞
𝑖 , recording the time when

the user 𝑢 conducts the query 𝑞𝑖 . As described in section 3.2, we

leverage the user’s search records as an instrumental variable. More

precisely, for each 𝑡 𝑗 , its corresponding instrumental variable is a

set of queries (𝑞1, 𝑞2, ..., 𝑞𝑖 ), where 𝑠
𝑞
𝑖 < 𝑠𝑡𝑗 . Without loss of gener-

ality, we employ cumulative concatenation to obtain instrumental

variable representations. Formally,

𝑞 𝑗 = (𝑞1 ⊕ 𝑞2 ⊕ ...𝑞𝑖 ), 𝑠
𝑞
𝑖 < 𝑠𝑡𝑗 , (2)

𝑍𝑢,𝑖 = {𝑧 𝑗 : 𝑗 ∈ 𝑇𝑢,𝑖 }, (3)

where 𝑧 𝑗 is the embedding vector of query 𝑞 𝑗 , which is generated

in the same way as treatment, i.e., through some representation

learning methods (e.g., BERT).

3.5 Treatment Reconstruction Module

Once the necessary elements, i.e., 𝑇𝑢,𝑖 and 𝑍𝑢,𝑖 , are obtained, we
perform causal decomposition using 2SLS approach to obtain re-

constructed representations. In this way, we strive to obtain more

efficient community representations for knowledge transfer.

3.5.1 Treatment decomposition. The essential idea of the IVs-based

approach is to identify causal associations from treatment to out-

come. On account of the properties of the valid IVs (i.e., IVs are

not affected by confounding factors 𝐶 , and only affects the out-

come 𝑌 via treatments), we regress 𝑇𝑢,𝑖 on 𝑍𝑢,𝑖 to get 𝑇𝑢,𝑖 (casual
association) and 𝑇𝑢,𝑖 (non-casual association). Formally,

𝑇𝑢,𝑖 = {t̂𝑗 = 𝑧 𝑗 · 𝑡 𝑗 : 𝑗 ∈ 𝐼 C𝑢 ∪ {𝑖}}, 𝑖 ∈ 𝐼M𝑢 , (4)

where 𝑡 𝑗 ∈ 𝑇𝑢,𝑖 and 𝑧 𝑗 ∈ 𝑍𝑢,𝑖 . The t̂𝑗 ∈ 𝑇𝑢,𝑖 is the fitted part of the

embedding 𝑡 𝑗 , which reflects the causal association between the

treatment and the outcome in recommender system. Particularly,

it is a closed-form solution of argmin‖𝑧 𝑗 𝑡 𝑗 −MLP𝑟𝑒𝑔 (𝑡 𝑗 )‖
2
2. When

𝑇𝑢,𝑖 is obtained, the residual part of the regression𝑇𝑢,𝑖 can be easily

obtained. Formally,

𝑇𝑢,𝑖 = {t̃𝑗 = MLP𝑟𝑒𝑔 (𝑡 𝑗 ) − t̂𝑗 : 𝑗 ∈ IC
𝑢 ∪ {𝑖}}, 𝑖 ∈ 𝐼M𝑢 . (5)

3.5.2 Treatment reconstruction. When the treatment variables are

successfully decomposed, we take the fitting vector 𝑇𝑢,𝑖 , and the

residual 𝑇𝑢,𝑖 for representation reconstruction, hoping to obtain

better cross-domain knowledge transfer. Fromally,

𝑇 re
𝑢,𝑖 = {𝑡 re𝑗 = 𝛾1𝑗 t̂𝑗 + 𝛾

2
𝑗 t̃𝑗 : 𝑗 ∈ IC

𝑢 ∪ {𝑖}}, 𝑖 ∈ 𝐼M𝑢 , (6)

where t̂𝑗 ∈ 𝑇𝑢,𝑖 and t̃𝑗 ∈ 𝑇𝑢,𝑖 . We aggregate them using differ-

ent weights, i.e., 𝛾1𝑗 and 𝛾2𝑗 , obtained by feeding their respective

representations into different transformation matrices. Formally,

𝛾1𝑗 =𝑊1 (MLP𝑟𝑒𝑔 (𝑡 𝑗 ) ⊕ 𝑧 𝑗 ), 𝛾2𝑗 =𝑊2 (MLP𝑟𝑒𝑔 (𝑡 𝑗 ) ⊕ 𝑧 𝑗 ), (7)

where the input of two different transformation matrices, i.e.,𝑊1

and𝑊2, is the concatenation of 𝑡 𝑗 and 𝑧 𝑗 . Finally, we aggregate

the representations of the community domain according to the

timestamps of the mall domain to facilitate knowledge transfer. This
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Figure 4: The overall framework of ARISEN.

approach is in line with intuition, that is, the user’s behavior in the

community forum serves his purchase decision in themall [1, 30, 31].

Formally, for each 𝑡𝑟𝑒𝑖 ∈ 𝑇 re
𝑢,𝑖 ,

𝑡𝑟𝑒𝑖 =

𝑠M𝑖∑

𝑗=𝑠M𝑖−1

(𝑡𝑟𝑒𝑗 ), (8)

where 𝑠M𝑖 is a timestamp of 𝑖 in the mall sequence. In this way,𝑇 𝑟𝑒
𝑢,𝑖

and 𝐼M𝑢 are of equal sequence length 𝑙M .

To sum up, this reconstruction is to project the non-linear represen-

tation of the embedding into the subspace spanned by the IVs, thus

distinguishing the fitting part from the residual part. Furthermore,

effective intervention on the fitting part and the residual part can

help to mine and utilize their different mechanisms to improve the

performance of the recommender system. It bears mentioning that the

residual part isn’t simply discarded, but rather weighted and recon-

stituted in light of the valid information it contained. The validity of

this element will be expounded upon in section 4.3.2.

3.6 Orthogonal Mapping Module

To carry out fine-grained knowledge fusion at the time point level,

we first obtain the representation of user preference in the mall

domain. Formally,

𝐸𝑢,𝑖 = {𝑒 𝑗 : 𝑗 ∈ 𝐼M𝑢 }, (9)

where 𝑒 𝑗 is the embedding vector of product 𝑗 in mall, which is

usually generated by some representation learning methods (e.g.,

BERT) and |𝐼M𝑢 | = 𝑙M .

In the previous section, we obtain the reconstructed community

domain representation𝑇 𝑟𝑒
𝑢,𝑖 , but the existence of domain differences

makes its rough aggregation with the mall domain representation

prone to noise, leading to inestimable performance degradation. In

view of this, we do not directly integrate the reconstructed repre-

sentation of the source domain into the target domain. Instead, we

use an orthogonal mapping network to guarantee domain-specific

properties. Specifically, we use two mutually orthogonal projection

matrices, i.e.,𝑊M and𝑊C , to transform the reconstructed source

domain representation and target domain representation, expecting

that the difference between the two representations is large enough

while maintaining the recommendation performance. Formally,

< 𝐸𝑢,𝑖 ,𝑇
𝑟𝑒
𝑢,𝑖 >↔<𝑊M𝐸𝑢,𝑖 ,𝑊C𝑇

re
𝑢,𝑖 >, (10)

L𝑜𝑟𝑡ℎ =
𝑙M∑

𝑖=1

| |𝑒𝑢,𝑖 · (𝑡
𝑟𝑒
𝑢,𝑖 )
ᵀ | |2

| |𝑒𝑢,𝑖 | | · | | (𝑡𝑟𝑒𝑢,𝑖 ) | |
, (11)

where 𝑙M denotes length of mall sequence and L𝑜𝑟𝑡ℎ is used to

guarantee the orthogonalization of the two domain representations.

Finally, the embeddings of the two domains are mixed into the

underlying model. Formally,

𝑦𝑢,𝑖 = 𝑈𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔𝑀𝑜𝑑𝑒𝑙 (𝑃𝑢 ⊕ 𝐸M
𝑢,𝑖 ⊕ 𝑇 C

𝑢,𝑖 ), (12)

where 𝑃𝑢 represents user attributes. Without loss of generality, we

choose DIN [57] as the underlying model in our experiments.

In a nutshell, this method has several advantages. On the one

hand, the orthogonal mapping retains the special characteristics of

the domain; on the other hand, compared with random initialization,

it serves as a regularization term that effectively mitigates model

overfitting [11, 25, 26, 50].

3.7 IVs Collaborative Optimization Module

Considering that pre-defined manual IVs may become brittle or

suboptimal due to condition violations during training process, we

propose a collaborative optimization method for IVs. Specifically,

we exploit mutual information constraints to force IVs to satisfy rel-

evance, exclusion and unconfounded instrument conditions, thereby

guaranteeing the accuracy of downstream counterfactual predic-

tion tasks. Benefiting from the previous work that has proved the

exogenous nature of user search records as IVs [33], and the learned

representations always satisfy the unconfounded instrument condi-

tion [5, 17, 35], we only need to make the IVs representation satisfy

the relevance condition with the treatment and the exclusion con-

dition with the outcome during the whole training.

Relevance condition. To encourage the representation of IVs 𝑍𝑢,𝑖
relevant to treatment 𝑇𝑢,𝑖 , we maximize the mutual information
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between the IVs 𝑍𝑢,𝑖 and treatment 𝑇𝑢,𝑖 . Formally,

L𝑍𝑅 = −
1

𝑙C𝑙Q

𝑙C∑

𝑗=1

𝑙Q∑

𝑞=1

(log (𝑀𝐼 (𝑡 𝑗 | 𝑧 𝑗 )) − log (𝑀𝐼 (𝑡𝑞 | 𝑧 𝑗 ))), (13)

where 𝑀𝐼 (·) stands for mutual information estimator MINE [4],

log (𝑀𝐼 (𝑡 𝑗 | 𝑧 𝑗 )) represents the conditional log-likelihood of the

pairs of positive samples, and log (𝑀𝐼 (𝑡𝑞 | 𝑧 𝑗 )) represents the con-
ditional log-likelihood of the pairs of negative samples. 𝑙Q is the

size of IVs sets, equal to 𝑙C .
Exclusion condition. In this case, the IVs 𝑍𝑢,𝑖 should be inde-

pendent of the outcome 𝑌𝑢,𝑖 caused by treatment 𝑇𝑢,𝑖 . Instead of

maximizing mutual information in learning relevance, we make

positive (𝑦 𝑗 | 𝑧 𝑗 ) and negative (𝑦𝑞 | 𝑧 𝑗 )(𝑞≠𝑗 ) sample pairs have

close log-likelihood expectations so that IVs and outcome 𝑌 are

conditionally independent. Formally,

L𝑍𝐸 =
1

𝑙C𝑙Q

𝑙C∑

𝑗=1

𝑙Q∑

𝑞=1

(log (𝑀𝐼 (𝑦 𝑗 | 𝑧 𝑗 ) − log (𝑀𝐼 (𝑦𝑞 | 𝑧 𝑗 ))). (14)

Capitalizing on the aforementioned relevance and exclusion condi-

tional loss functions, this approach accomplish the enhancement of

similarity between the IVs and treatments concurrent with the attenu-

ation of similarity between the former and outcomes over the course of

training. This not only alleviates the defects of the traditional method

due to manual definition of IVs, but also avoids the possible violation

of instrumental variable conditions in the training process.

3.8 Model Training

Supervision loss.We adopt cross-entropy to guarantee the per-

formance of the model on the target domain. Formally,

L𝑐𝑟𝑝 = −
1

|DM |

∑

(𝑢,𝑖,𝑐 ) ∈DM

𝑐 · log𝑦𝑢,𝑖 + (1−𝑐) · log(1−𝑦𝑢,𝑖 ), (15)

where 𝑦𝑢,𝑖 is the predicted matching score of (𝑢, 𝑖).
Total loss. ARISEN is optimized in an end-to-end manner. The total

loss consists of four parts: supervised loss, mutual information loss,

orthogonalization constraints, and model regularization. Formally,

L𝑡𝑜𝑡𝑎𝑙 = L𝑐𝑟𝑝 + 𝜆1 (L𝑍𝑅 + L𝑍𝐸 ) + 𝜆2L𝑜𝑟𝑡ℎ + 𝜆3‖Θ‖2, (16)

where ‖Θ‖2 is the regularization term to avoid overfitting. 𝜆1, 𝜆2,
𝜆3 are the trade-offs among four parts. Please note that the tuning

of 𝜆1 serves to balance the training dynamics of the IVs optimization

and primary recommendation tasks.

The parameters of ARISEN are derived from𝑀𝐿𝑃𝑟𝑒𝑔 ,𝑊 , MINE,

and underlying model. All these trainable parameters are denoted

as Θ, and are trained using gradient descent. Formally,

Θ𝑛𝑒𝑤 = Θ𝑜𝑙𝑑 − 𝜂
𝜕Ltotal

𝜕Θ𝑜𝑙𝑑
, (17)

where 𝜂 denotes learning rate.

For the complete algorithm framework, see Algorithm 1.

3.9 Plug-in Application

Prevalent sequential recommendation models [39, 40] adopt simi-

lar architecture and training methods, which utilize fixed-length

user history interaction and contextual information to capture user

Algorithm 1 The Algorithm of ARISEN

Input: Mall click sequence 𝐼M𝑢 , Community click sequence 𝐼 C𝑢 ,

Dual domain query sequence Q𝑢 ; Target product 𝑦𝑖 .
Output: Model parameters Θ;
1: Random initialize model parameters Θ;
2: Data preprocessing ;

3: while not converged do

4: Sample a batch of training data;

5: Constructing treatment 𝑇𝑢,𝑖 and IVs 𝑍𝑢,𝑖 ;
6: Obtain causal association 𝑇𝑢,𝑖 as equation 4;

7: Latent orthogonal mapping as equation 11;

8: Feed into underlying model as equation 12;

9: IVs co-optimization as equation 13 and 14;

10: Caculate total loss as equation 16;

11: Update parameters Θ as equation 17.

12: end while

13: return Parameters Θ

preferences, and then employ cross-entropy or BPR loss for opti-

mization. Our proposed framework is a plug-in framework that can

be implemented on existing recommender systems by adding treat-

ment reconstruction and IVs collaborative optimization to achieve

better cross-domain knowledge transfer. Specifically, assuming that

there are two domains S and T , we can reconstruct the treatment

of the source domain according to the constructed causal graph

mentioned in section 3.2, and integrate them with the information

of the target domain to obtain a semantic-rich representation 𝑋𝑟𝑒
𝑢 ,

thereby improving the recommendation performance. Formally,

𝑋𝑟𝑒
𝑢 = 𝐴𝑔𝑔((𝐴𝑔𝑔(𝐸T

𝑢,𝑖 ,𝑇
S
𝑢,𝑖 ), 𝑃

𝑢 )), (18)

where 𝑃𝑢 refers to contextual information such as user tags and user

profiles, and 𝐴𝑔𝑔 can be any aggravated function, such as concate-

nation, mean pooling or attention mechanism. Finally, the matching

score can be predicted based on the learned representations of user

and items. Formally,

𝑦𝑢,𝑖 = 𝑓𝑝𝑟𝑒𝑑 (𝑋
𝑟𝑒
𝑢 , 𝑦𝑖 ), (19)

where 𝑓𝑝𝑟𝑒𝑑 (·) can be any model that predicts the matching score,

such as dot product or MLP layer. We will give specific experiments

to prove this point in the experimental section.

The primary role of the ARISEN is to introduce causal associations

in the resource domain so as to strengthen the user representations in

the target domain. Therefore, in addition to the sequence recommen-

dation task, it can be aggregated with other recommendation tasks

using user representations in the form of modifying interfaces, such

as session-based recommendations, collaborative filtering, and so on.

4 EXPERIMENTS

In this section, we conduct experiments on a large real industrial

data set to evaluate the performance of our proposed model, aiming

to answer the following research questions (RQs):

• RQ1: How doesARISEN perform compared to existing baselines?

• RQ2: How robust and interpretable is ARISEN?

• RQ3: How do key hyperparameters affect ARISEN?
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4.1 Experimental Settings

4.1.1 Data set. In our experiments, we utilize a real-world large-

scale industrial data set as well as a publicly available Amazon 2

data set to evaluate the performance of the model. Table 1 shows

necessary statistics for these data sets.

The large-scale industrial data set is collected from behavior

logs of overlapping users in shopping malls (source domain) and

community forums (target domain). The data time frame for both

platforms is from January to November 2022. For the Amazon

data set, we construct cross-domain tasks using two subcategories,

Book (source domain) and Movies and TV (target domain). As for

there is no record of user queries, we treat user comment data

as queries. In order to ensure data quality and facilitate model

training, we filter out users whose click sequence length is less than

5 according to [33], and cut all behavior sequences to a length of

50. In particular, for sequence whose length is less than 50, we use

0 for padding, and for sequences whose length is greater than 50,

we cut them into multiple sequences. We leverage BERT [12] to

process user/product profiles and post content separately to obtain

initial embeddings.

Table 1: Statistics of the industrial and amazon data set.

data set
Industrial Amazon

mall community movie book

users 4,391 4,391 35,146 35,146

Items 3,090 1,143 77,522 514,808

Interactions 206,335 15,046 621,008 1,167,757

Sparsity 98.48% 99.70% 99.98% 99.99%

Queries 25,808 534,688

Our data set splitting adopts the leave-one-out method widely

used in sequential recommendation [40], taking the last item of the

sequence as the test set, the penultimate item as the validation set,

and the rest as the training data. For training, we equip each ground

truth for training with 7 negative samples to enhance the discrimi-

native ability. For performance evaluation, we mix the ground truth

of the test set into randomly selected 99 items that have not been

clicked, and then rank them according to the matching scores of

users and these items.

4.1.2 Baselines. We compare ARISEN with the state-of-the-art rec-

ommendation models. More specifically, these baselines can be

categorized into single-domain recommendation models (NMF, DIN,

IV4Rec) and cross-domain recommendation models (CDRIB, CoNet,

DTCDR, DDTCDR). Note that for the single-domain recommen-

dation baseline, only the target domain data is used for training

and performance reporting, while for the cross-domain recommen-

dation baseline, we use the data of both domains for training and

then report the model performance on the target domain.

• NMF [18]: NMF focuses on both linear and nonlinear relation-

ships between users and items.

• DIN [57]: DIN employs an attention mechanism to mine users’

interest from their historical interaction.

• IV4Rec [33]: IV4Rec leverages search logs to reconstruct user

representations in a causal manner.

2https://jmcauley.ucsd.edu/data/amazon/

• MVDNN [13]: MVDNN shares user representation extractors

across multiple domains for interest transfer.

• CDRIB [7]: CDRIB designs two regularizers, achieving debiasing

and capture cross-domain user dependencies.

• CoNet [20]: CoNet establishes cross-merging between the twin-

tower models of both domains for knowledge transfer.

• DTCDR [58]: DTCDR designs an adaptive embedding sharing

strategy based on multi-task learning (MTL).

• DDTCDR [25]: DDTCDR utilizes the two-waymapping equation

to realize the interest transfer of cold-start users.

For fairness, we carefully fine-tuned all baselines to achieve their

best performance.

4.1.3 Evaluation metrics and parameter settings. The data prepro-

cessing and train-test splitting strategy have been described in

detail in section 4.1.1. The evaluation metrics used in this study

include Area Under Curve (AUC), Hit Ratio (HR@N), Normalized

Discounted Cumulative Gain (NDCG@N), and Mean Reciprocal

Rank (MRR) [47]. HR@N is employed to assess the recall ability,

while AUC and NDCG@N are utilized to measure the ranking abil-

ity. In particular, we use MRR to measure the ranking ability of the

entire data set, i.e., 𝑁 = |𝐼M|. For all metrics, higher is better.

Experiments were performed on an Ubuntu 18.04 server with an

Intel(R) Xeon(R) Gold 5118 CPU (12 cores, 2.30GHz) and a single

NVIDIA Tesla V100 GPU. We implement the model using PyTorch

and optimize the parameters using the Adam optimizer with a

learning rate of 5e-4 and weight decay of 5e-4. The training is

performed for 100 epochs with a batch size of 1024. Hyperparame-

ter search is conducted for essential parameters to optimize their

values. Specifically, the embedding size rate is 128, derived from

[32, 64, 128, 256]. The mutual information weight is 0.1, obtained

from [0.1, 0.5, 1, 5, 10]. The sequence length is 50, which is searched

from [10, 30, 50, 70, 100]. See section 4.4 for their tuning process.

4.2 Comparison with Baselines (RQ1)

To answer RQ1 and verify the validity of our model, we compare

the performance of our model to the advanced baselines. Table

2 shows the results of all algorithms on the industrial data set

and the Amazon data set, respectively. Clearly, ARISEN outper-

forms all baselines on any metrics, demonstrating its effectiveness

and progressiveness. Specifically, compared with the traditional

single-domain recommendation algorithms NMF and DIN, cross-

domain recommendation algorithms such as ARISEN, CDRIB and

DTCDR have greatly improved recall and ranking, showing the im-

portance of cross-domain knowledge integration. Compared with

other cross-domain recommendation algorithms, ARISEN is 2.179%,

4.005% better than the best cross-domain recommendation model

in HIT@5 and NDCG@5, and 2.272% better than the best cross-

domain recommendation model in NDCG@10. In MRR, a metric

that uses the entire item set test, ARISEN still has a large advantage,

with respective improvements of 4.186% and 1.959% in two data sets

compared to the best baseline. Particularly, MVDNN and DDTCDR

perform unwell, even lower than single-domain recommendation

algorithms on somemetrics, which proves that coarse cross-domain

knowledge sharing and ingenuous mapping equations may have

negative impacts. IV4Rec adopts causal reconstruction similar to
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Table 2: Performance comparison with baselines.

Industrial Amazon

ALGORITHM AUC HIT\NDCG@1 HIT@5 HIT@10 NDCG@5 NDCG@10 MRR AUC HIT\NDCG@1 HIT@5 HIT@10 NDCG@5 NDCG@10 MRR

NMF 0.7695 0.0954 0.3005 0.4330 0.1981 0.2409 0.2038 0.5901 0.0361 0.1125 0.1851 0.0741 0.0974 0.0946
DIN 0.8145 0.1137 0.3679 0.5114 0.2436 0.2900 0.2415 0.7543 0.1730 0.3896 0.4914 0.2861 0.3190 0.2817

IV4Rec 0.8203 0.1262 0.3763† 0.5323† 0.2533 0.3037† 0.2526 0.7579 0.1732 0.3836 0.4876 0.2828 0.3131 0.2786
MVDNN 0.7597 0.0811 0.2754 0.4235 0.1765 0.2241 0.1843 0.7274 0.1622 0.3710 0.4770 0.2706 0.3049 0.2675
CoNet 0.8206 0.1187 0.3623 0.5234 0.2438 0.2957 0.2466 0.7606 0.1531 0.3814 0.5083 0.2707 0.3116 0.2682
DTCDR 0.8208 0.1173 0.3663 0.5253 0.2431 0.2943 0.2440 0.7657 0.1756† 0.4099† 0.5297† 0.2966† 0.3344† 0.2905†
DDTCDR 0.7959 0.1301† 0.3708 0.5029 0.2547† 0.2974 0.2532† 0.6228 0.0718 0.2027 0.2778 0.1388 0.1631 0.1478
CDRIB 0.8227† 0.1147 0.3634 0.5285 0.2395 0.2926 0.2417 0.7716† 0.1367 0.3660 0.4980 0.2547 0.2973 0.2538

ARISEN 0.8236 0.1371 0.3845 0.5341 0.2649 0.3106 0.2638 0.7780 0.1824 0.4194 0.5321 0.3052 0.3378 0.2962

Improvements 0.109% 5.380% 2.179% 0.338% 4.005% 2.272% 4.186% 0.822% 3.853% 2.330% 0.466% 2.923% 1.018% 1.959%

Improvements means the relative improvement of ARISON compared to the optimal baseline †.

(a) Results of HIT@5. (b) Results of NDCG@5.

(c) Results of AUC. (d) Results of MRR

Figure 5: Ablation results.

ours, but its single-domain limitation and non-optimization of in-

strumental variables make its performance weaker than ARISEN. It

is worth noting that ARISEN has a greater improvement in more dif-

ficult scenarios, namely Hit@1, NDCG@1, which further proves its

advanced nature. To sum up, cross-domain algorithms are stronger

than single-domain algorithms, and fine-grained knowledge inte-

gration and IVs-cooptimization are better than plain information

aggregation. ARISEN takes its essence and discard its dross.

4.3 Robust Tests (RQ2)

To answer RQ2, without loss of generality, we perform extensive ro-

bustness tests on the industrial data set, such as plug-in application,

ablation experiments, and visualizations.

4.3.1 Plug-in application. To demonstrate the generality and broad

prospects of our innovation, we improve on the classic sequen-

tial recommendation model, i.e., GRU4Rec [19] , CASER [37], SSE-

PT [43]. These underlying models are proven to achieve good per-

formance on sequential recommendation.

As shown in Table 3, adding our innovations to all underlying

models can promote their metrics. Specifically, on industrial data

set, ARISEN enhances GRU4Rec, improving recall and ranking per-

formance by up to 6.415%, 4.970%, respectively. Meanwhile, our

innovations have greatly improved in CASER and SSE-PT, and have

increased by more than 10% in many metrics. We also conduct

similar tests on the Amazon data set, and the plugin demonstrate

significant improvements for the original algorithm. These results

(a) Original (DIN). (b) Reconstrcuted (DIN).

(c) Original (SSE-PT). (d) Reconstrcuted (SSE-PT).

Figure 6: T-SNE visualization of the treatment variable.

fully demonstrate the effectiveness and pluggability of our innova-

tions.

4.3.2 Ablation study. To test the effectiveness of each sub-module,

we perform module elimination and keep other parts unchanged.

• ARISEN-NA: This variant eliminates all cross-domain-related

innovations and utilizes only the underlying models.

• ARISEN-NMI: This variant eliminates co-optimization of IVs.

• ARISEN-NO: It directly fuses representations without consider-

ing domain disparties.

• ARISEN-NR: It only uses causal representations 𝑇𝑢,𝑖 for fusion.

As shown in Figure 5, the performance of our model is higher than

that of the variants in any metrics, which fully proves the indispens-

ability of each sub-module. To be specific, ARISEN-NA suffers from

unsatisfactory result due to lack of cross-domain knowledge and

data sparsity. ARISEN-NO ignores domain differences and directly

performs information fusion, which results in noise interference

and performance degradation. ARISEN-NMI has inferior perfor-

mance because it discards the co-optimization of instrumental vari-

ables. This approach not only fails to alleviate the inaccuracy of

manual selection of instrumental variables, but also fails to properly

decouple causality as a consequence of the inability to maintain rel-

evance and exogenous conditions during the optimization process.

ARISEN-NR is slightly weaker than our results, because confound-

ing factors and outcome are correlated [33], thus cannot be dis-

carded directly. In a nutshell, our model comprehensively considers

the rationality of instrumental variables and domain differences,

and improves performance through targeted model design.
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Table 3: Experimental results of plug-in applications.

Industrial Amazon

ALGORITHM AUC HIT\NDCG@1 HIT@5 HIT@10 NDCG@5 NDCG@10 MRR AUC HIT\NDCG@1 HIT@5 HIT@10 NDCG@5 NDCG@10 MRR

GRU4Rec 0.7826 0.0966 0.3046 0.4474 0.2014 0.2475 0.2075 0.7628 0.1801 0.4190 0.5185 0.3046 0.3370 0.2952
ARISEN-GRU4Rec 0.8037 0.1002 0.3112 0.4761 0.2067 0.2598 0.2156 0.7776 0.1850 0.4244 0.5378 0.3070 0.3436 0.2985

Improvements 2.696% 3.727% 2.167% 6.415% 2.632% 4.970% 3.904% 1.944% 2.721% 1.294% 3.717% 0.788% 1.970% 1.105%

CASER 0.7418 0.0606 0.2162 0.3419 0.1389 0.1794 0.1551 0.7683 0.1608 0.3970 0.5094 0.2835 0.3199 0.2774
ARISEN-CASER 0.7533 0.0697 0.2376 0.3850 0.1535 0.2009 0.1684 0.7720 0.1792 0.4054 0.5130 0.2952 0.3300 0.2894

Improvements 1.550% 15.017% 9.898% 12.606% 10.511% 11.984% 8.575% 0.481% 11.431% 2.111% 0.693% 4.136% 3.167% 4.328%

SSE-PT 0.7939 0.1039 0.3189 0.4656 0.2127 0.2602 0.2184 0.7716 0.1813 0.4228 0.5265 0.3070 0.3404 0.2978
ARISEN-SSE-PT 0.8249 0.1221 0.3793 0.5292 0.2512 0.2997 0.2492 0.7755 0.1840 0.4264 0.5323 0.3101 0.3441 0.3008

Improvements 3.905% 17.517% 18.940% 13.660% 18.101% 15.181% 14.103% 0.502% 1.472% 0.841% 1.108% 0.987% 1.076% 1.014%

(a) Results of HIT. (b) Results of NDCG.

Figure 7: Hyperparameter test - embedding size

4.3.3 Treatment variable visualization. To further validate the ef-

fectiveness and understandability of our causal decoupling module,

we also show visualization of the treatment variable before and

after reconstruction using T-SNE [38].

Figure 6(a) and Figure 6(b) are visualizations of the treatment vari-

able before and after causal decoupling in ARISEN, while Figure 6(c)

and Figure 6(d) are for ARISEN-SSE-PT. By comparison, there is

evidence that the reconstructed embeddings are more evenly dis-

tributed than the original ones, which is attributed to the fact that

ARISEN generally removes the effects of confounding factors.

4.4 Hyper-testing (RQ3)

To answer RQ3, we investigate the impact of key hyperparameter

settings on model performance on industrial data set. Specifically,

we present the impact of embedding size 𝑘 , sequence length 𝑙M ,

and mutual information weight 𝜆1 on ARISEN, respectively.

Embedding size 𝑘 . Embedding size represents model capacity and

complexity. Small 𝑘 may cause underfitting of the model, and vice

versa, overfitting [58]. As shown in Figure 7, our model achieves

the best performance when 𝑘 = 128.

Sequence length 𝑙M . The sequence length refers to the history

data used for training. Longer sequences imply more complete

patterns and interest preferences, but may bring noise. The evidence

in Figure 8 shows that the model works best when 𝑙 = 50.

Mutual information weight 𝜆1.Mutual information weight is a

trade-off between IVs co-optimizations and recommendation per-

formance. A larger weight tends to satisfy the conditions of instru-

mental variables, and vice versa, more attention is paid to the fitting

of recommendation results. Figure 9 shows that our proposed model

is better when 𝜆1 = 5.

5 CONCLUSION

In this paper, on the basis of causal learning techniques, we propose

a sequential recommendation framework via adaptive cross-domain

(a) Results of HIT. (b) Results of NDCG.

Figure 8: Hyperparameter test - sequence length

(a) Results of HIT. (b) Results of NDCG.

Figure 9: Hyperparameter test - mutual information weight

knowledge decomposition (i.e., ARISEN ) to boost recommendation

performance. ARISEN employs the user’s search records in the

two domains as instrumental variables to decompose their inter-

action behavior in the community domain into purchase-related

and purchase-independent parts. Meanwhile, in order to overcome

the arbitrariness and labor cost of instrumental variable selection,

ARISEN incorporates an adaptive learning paradigm that utilizes

mutual information maximization for instrumental variable col-

laborative optimization. Two orthogonal matrices are applied to

information fusion to alleviate possible noise and performance

degradation caused by domain characteristics. Extensive compara-

tive experiments and robustness tests with state-of-the-art baselines

demonstrate the effectiveness and interpretability of our model. De-

spite this, our model still has some limitations that are left for future

work. First, our innovations are pluggable applications and should

be tested on more underlying models. Second, we should test the

performance of our model on more large-scale cross-domain tasks,

especially in scenarios with large domain differences.
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